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1 Introduction

Recent research in high-order discretisations of partial differential equations
suggests the need for mesh adaptivity to reduce solution error at a reason-
able computational cost [8]. Simplices are often used because of their ability
to easily mesh complex domains; however, hexahedra offer better alignment
with solution features, such as shocks or boundary layers. The goal of this re-
port is to describe some work in developing an anisotropic quadrilateral mesh
generator with the intent of extending the framework to higher dimensions.

Anisotropy is specified here through a continuous field of metric tensors, fol-
lowing the framework of [6], [3] and [4]. Since we expect our metric to be
described discretely at the nodes of a background tesselation, the tensor at
any point x is evaluated by computing the weighted affine-invariant mean,
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where κ is the enclosing element of x in the background tesselation, V(κ) is
the set of vertices of κ and wν(x) is the barycentric coordinate of x corre-
sponding to vertex ν. This mean is computed iteratively with the gradient
descent algorithm of [6] which usually converges within 10 iterations.

Our problem can now be stated as follows: generate a quad-dominant mesh
such that all edges are nearly of unit length under the specified metric,
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and all elements are of sufficient quality in the metric space,
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where cκ is the quality of a perfect element: cκ = 4
√
3 for triangles and 4 for

quadrilaterals; β provides a bound on the poorest desired element quality.

2 Approach

Our overall approach is similar to the Q-Morph algorithm [5]. That is, we
generate an initial triangulation, set up fronts along the boundaries and ad-
vance towards the interior using a suitable method for defining quadrilaterals.
In contrast to [5] and [2], we do not use edges of the existing triangulation for
defining quadrilaterals but, instead, recover all the necessary edges through
edge swapping [5]. The primary advantage of marching into an existing trian-
gulation instead of free space as in [1] is that front collisions are detected at
a lower cost during edge recoveries or point-in-triangle searches.

2.1 Boundary discretisation

The fronts are initialized to the geometry boundaries and must first be dis-
cretised according to the requested metric. Each boundary is represented by
a set of primitive entities (lines, arcs, splines). The total length of the bound-
ary entity in the metric space ℓ(Γ ) gives an estimate of the number of edges
to be inserted as N = round(ℓ(Γ )); each edge then has a target length of
ℓ(γ) = ℓ(Γ )/N and are discretised by recursively bisecting the remaining ar-
clength until a root of f(s) = ℓ(γ)− ℓ(γ) is found (Fig. 1(a)).

2.2 Quadrilateral definition

We explored a variety of methods for defining quadrilaterals. One interesting
method was to locally streamline the eigenvectors of the continuous metric
field with a four-stage Runge-Kutta integration method [7]. Elements were
defined by intersecting these streamlines to create unit length edges; however,
this had no guarantee on the resulting element quality. We also studied objec-
tive functions to locally optimize the coordinates of the inserted quad. One of
these involved the minimization of the affine-invariant distance between the
element-implied (Mκ) and target (Mt) metric,
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where the element-implied metric is computed from the Jacobian as Mκ(x) =
(J (x)TJ (x))−1.
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The aforementioned methods are computationally expensive and, although
they solve the local quadrilateral generation problem, they ignore the global
one. One single insertion has a significant effect on the topology of the growing
mesh. Thus, we also developed a more heuristic approach, locally analyzing
the requested sizes of the metric at the front edge and spend additional time
smoothing the surrounding front edges.

s0

smin
smax

Γ

γ0 γ1

γ2

γ3

γ4

(a) Boundary discretisation

Floating nodeRow node

e1

e2

e3

e4

e5

e6

e7

α1
α2

α3

α4

α6

α7

α8

α5

(b) Smoothing

Fig. 1. Boundary-metric discretisation and smoothing algorithms

2.3 Front smoothing

Front nodes are smoothed based on whether they are row nodes which are
connected to two quadrilaterals or floating nodes which are connected to only
one quadrilateral [1], [5], [2]. In contrast to previous approaches, nodes are
smoothed with a nonlinear optimizer. To avoid additional computational cost,
only five nodes surrounding an insertion are smoothed. For a floating node ν,
we minimize

f(ν) = (ℓ(e2)− 1)
2
+ (ℓ(e3)− 1)

2
+ cos2(α2) + cos2(α3) + cos2(α4) (5)

where the angles are measured in the metric space. For example, cos(α3) =
(e2 · e3)M/(ℓ(e2)Mℓ(e3)M). This function drives edges e2 and e3 to unit
length under M and angles α2, α3, α4 to 90◦ in the metric space (Fig. 1(b)).
A similar approach is taken for row nodes, where additional terms accounting
for the lengths of edges e5 and e6 and the remaining angles are added to
Eq.(5).

3 Results and Discussion

Preliminary tests

Our approach was first tested in a [−10, 10]2 square with an analytic shock-
boundary layer type metric,



4 Authors Suppressed Due to Excessive Length

M(x, y) =

[

(.045x+ 5.05)−2 0

0 (.045y + 5.05)
−2

]

(6)

defined at the vertices of the triangulation of Fig. 2(a). The resulting mesh
contains 165 vertices, 139 quads and 2 triangles (lower left corner of Fig. 2(c));
the average edge length inM is ℓ̄M = 0.934 with a standard deviation of 0.110.

A similar, less anisotropic metric was then tested in a quarter-circle to study
the effects of a boundary which does not align with the eigevenvectors of
M. The meshes obtained by streamlining the eigenvectors (Fig. 3(b): ℓ̄M =
0.939± 0.163) and the normal-based method (Fig. 3(c): ℓ̄M = 0.996± 0.150).
It appears streamlining the eigenvectors produced higher quality elements at
front collisions; however, boundary alignment and overall mesh quality are
poorer than the normal-based method. Note there is still some topological
cleanup to be done and we have yet to implement a global anisotropic smooth-
ing scheme. Both methods, nonetheless, exhibit the desired directionality in
contrast to simplex adaptation algorithms, as shown in Fig. 3(a).

(a) Initial (b) Intermediate (c) Final

Fig. 2. Meshes generated for the square test case (normal-based insertion)

(a) Simplex-based (b) Streamlining (c) Normal-based

Fig. 3. Comparison of different methods in the quarter-circle test case
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RAE 2822 transonic airfoil with boundary layer

The algorithm is currently being tested on a transonic RAE 2822 airfoil where
the requested metric is optimized to reduce the drag error estimate at a spec-
ified computational cost [9]. Fig. 4(c) suggests our mesh generation algorithm
is appropriately capturing boundary alignment while conforming to the met-
ric; however, there is still work to be done in refining the smoothing algorithm
since many irregular elements are formed as the fronts advance (Fig. 4(b)).

(a) Initial (b) Intermediate (c) Intermediate (zoom)

Fig. 4. Meshes generated for the RAE 2822 test case (normal-based insertion)
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